148 research outputs found

    Regulation of Glucose Homeostasis by the PHLPP1 Phosphatase

    Get PDF
    Type 2 diabetes mellitus is a metabolic disease that affects one in ten people in the United States. It is caused by a combination of genetics and lifestyle factors. Disease progression begins with insulin resistance in peripheral tissues followed by pancreatic beta-cell failure. The mechanisms behind disease progression are not completely understood. PH domain leucine rich repeat protein phosphatase 1 (PHLPP1) is a known regulator of Akt and other members of the AGC kinase family. Akt has been established to play a role in numerous metabolic signaling pathways, including insulin action. It is hypothesized that as a regulator of Akt, PHLPP1 would have an important function in glucose homeostasis. Glucose tolerance tests performed on 8-week old Phlpp1-/- mice revealed no significant difference in glucose tolerance compared to wild type, however these mice did exhibit increased fasting blood glucose levels. Glucose tolerance tests were repeated at 20 weeks on the same mice and, interestingly, they displayed impaired glucose tolerance compared to wild type. Insulin tolerance tests showed that 8-week old mice have increased insulin sensitivity, however, the 20-week old mice were insulin-resistant compared to control animals. The 20-week old knockout mice also had significantly higher fasting blood glucose levels compared to 8-week old mice. To determine if the increased fasting blood glucose levels are due to increased hepatic glucose output, pyruvate tolerance tests were performed on both the 8 & 20 week old mice. Old mice displayed significantly increased hepatic glucose production compared to wild type. EchoMRI done on 24-week old mice showed significantly increased fat mass and decreased lean mass in the Phlpp1-/- mice compared to wild type littermates. Western blot analysis of liver samples from 32 week old Phlpp1-/- mice indicates loss of Akt signaling accompanied by a decrease in IRS2 protein levels, a common indicator of insulin resistance. These data suggest that Phlpp1-/- mice mimic the development of type 2 diabetes in humans, and provide a unique animal model to study the progression of type 2 diabetes and diabetes-associated complications

    EGFR Testing and Erlotinib Use in Non-Small Cell Lung Cancer Patients in Kentucky

    Get PDF
    This study determined the frequency and factors associated with EGFR testing rates and erlotinib treatment as well as associated survival outcomes in patients with non small cell lung cancer in Kentucky. Data from the Kentucky Cancer Registry (KCR) linked with health claims from Medicaid, Medicare and private insurance groups were evaluated. EGFR testing and erlotinib prescribing were identified using ICD-9 procedure codes and national drug codes in claims, respectively. Logistic regression analysis was performed to determine factors associated with EGFR testing and erlotinib prescribing. Cox-regression analysis was performed to determine factors associated with survival. EGFR mutation testing rates rose from 0.1% to 10.6% over the evaluated period while erlotinib use ranged from 3.4% to 5.4%. Factors associated with no EGFR testing were older age, male gender, enrollment in Medicaid or Medicare, smoking, and geographic region. Factors associated with not receiving erlotinib included older age, male gender, enrollment in Medicare or Medicaid, and living in moderate to high poverty. Survival analysis demonstrated EGFR testing or erlotinib use was associated with a higher likelihood of survival. EGFR testing and erlotinib prescribing were slow to be implemented in our predominantly rural state. While population-level factors likely contributed, patient factors, including geographic location (areas with high poverty rates and rural regions) and insurance type, were associated with lack of use, highlighting rural disparities in the implementation of cancer precision medicine

    Clinical Outcomes of Molecular Tumor Boards: A Systematic Review

    Get PDF
    PURPOSE: We conducted this systematic review to evaluate the clinical outcomes associated with molecular tumor board (MTB) review in patients with cancer. METHODS: A systematic search of PubMed was performed to identify studies reporting clinical outcomes in patients with cancer who were reviewed by an MTB. To be included, studies had to report clinical outcomes, including clinical benefit, response, progression-free survival, or overall survival. Two reviewers independently selected studies and assessed quality with the Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group or the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies depending on the type of study being reviewed. RESULTS: Fourteen studies were included with a total of 3,328 patients with cancer. All studies included patients without standard-of-care treatment options and usually with multiple prior lines of therapy. In studies reporting response rates, patients receiving MTB-recommended therapy had overall response rates ranging from 0% to 67%. In the only trial powered on clinical outcome and including a control group, the group receiving MTB-recommended therapy had significantly improved rate of progression-free survival compared with those receiving conventional therapy. CONCLUSION: Although data quality is limited by a lack of prospective randomized controlled trials, MTBs appear to improve clinical outcomes for patients with cancer. Future research should concentrate on prospective trials and standardization of approach and outcomes

    Obesity and Diabetes Cause Cognitive Dysfunction in the Absence of Accelerated β-Amyloid Deposition in a Novel Murine Model of Mixed or Vascular Dementia

    Get PDF
    Mid-life obesity and type 2 diabetes mellitus (T2DM) confer a modest, increased risk for Alzheimer\u27s disease (AD), though the underlying mechanisms are unknown. We have created a novel mouse model that recapitulates features of T2DM and AD by crossing morbidly obese and diabetic db/db mice with APPΔNL/ΔNLx PS1P264L/P264L knock-in mice. These mice (db/AD) retain many features of the parental lines (e.g. extreme obesity, diabetes, and parenchymal deposition of β-amyloid (Aβ)). The combination of the two diseases led to additional pathologies-perhaps most striking of which was the presence of severe cerebrovascular pathology, including aneurysms and small strokes. Cortical Aβ deposition was not significantly increased in the diabetic mice, though overall expression of presenilin was elevated. Surprisingly, Aβ was not deposited in the vasculature or removed to the plasma, and there was no stimulation of activity or expression of major Aβ-clearing enzymes (neprilysin, insulin degrading enzyme, or endothelin-converting enzyme). The db/AD mice displayed marked cognitive impairment in the Morris Water Maze, compared to either db/db or APPΔNLx PS1P264L mice. We conclude that the diabetes and/or obesity in these mice leads to a destabilization of the vasculature, leading to strokes and that this, in turn, leads to a profound cognitive impairment and that this is unlikely to be directly dependent on Aβ deposition. This model of mixed or vascular dementia provides an exciting new avenue of research into the mechanisms underlying the obesity-related risk for age-related dementia, and will provide a useful tool for the future development of therapeutics

    Multi-messenger Astrophysics with Pulsar Timing Arrays: Astro2020 Science White Paper

    Get PDF
    Pulsar timing arrays (PTAs) are on the verge of detecting low-frequency gravitational waves (GWs)from supermassive black hole binaries (SMBHBs). With continued observations of a large sampleof millisecond pulsars, PTAs will reach this major milestone within the next decade. Already,SMBHB candidates are being identied by electromagnetic surveys in ever-increasing numbers;upcoming surveys will enhance our ability to detect and verify candidates, and will be instrumentalin identifying the host galaxies of GW sources. Multi-messenger (GW and electromagnetic) obser-vations of SMBHBs will revolutionize our understanding of the co-evolution of SMBHs with theirhost galaxies, the dynamical interactions between binaries and their galactic environments, and thefundamental physics of accretion. Multi-messenger observations can also make SMBHBs `standardsirens' for cosmological distance measurements out to z ~ 0.5 LIGO has already ushered in break-through insights in our knowledge of black holes. The multi-messenger detection of SMBHBs withPTAs will be a breakthrough in the years 2020-2030 and beyond, and prepare us for LISA to helpcomplete our views of black hole demographics and evolution at higher redshifts

    Convergent genetic and expression data implicate immunity in Alzheimer's disease

    Get PDF
    Background Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease we extended these genetic data in a pathway analysis. Methods The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected p 0.002 – 0.05). Conclusions The immune response, regulation of endocytosis, cholesterol transport and protein ubiquitination represent prime targets for AD therapeutics

    Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE).

    Get PDF
    PURPOSE: Gene expression-based molecular subtypes of high-grade serous tubo-ovarian cancer (HGSOC), demonstrated across multiple studies, may provide improved stratification for molecularly targeted trials. However, evaluation of clinical utility has been hindered by nonstandardized methods, which are not applicable in a clinical setting. We sought to generate a clinical grade minimal gene set assay for classification of individual tumor specimens into HGSOC subtypes and confirm previously reported subtype-associated features. EXPERIMENTAL DESIGN: Adopting two independent approaches, we derived and internally validated algorithms for subtype prediction using published gene expression data from 1,650 tumors. We applied resulting models to NanoString data on 3,829 HGSOCs from the Ovarian Tumor Tissue Analysis consortium. We further developed, confirmed, and validated a reduced, minimal gene set predictor, with methods suitable for a single-patient setting. RESULTS: Gene expression data were used to derive the predictor of high-grade serous ovarian carcinoma molecular subtype (PrOTYPE) assay. We established a de facto standard as a consensus of two parallel approaches. PrOTYPE subtypes are significantly associated with age, stage, residual disease, tumor-infiltrating lymphocytes, and outcome. The locked-down clinical grade PrOTYPE test includes a model with 55 genes that predicted gene expression subtype with >95% accuracy that was maintained in all analytic and biological validations. CONCLUSIONS: We validated the PrOTYPE assay following the Institute of Medicine guidelines for the development of omics-based tests. This fully defined and locked-down clinical grade assay will enable trial design with molecular subtype stratification and allow for objective assessment of the predictive value of HGSOC molecular subtypes in precision medicine applications.See related commentary by McMullen et al., p. 5271.Core funding for this project was provided by the National Institutes of Health (R01-CA172404, PI: S.J. Ramus; and R01-CA168758, PIs: J.A. Doherty and M.A.Rossing), the Canadian Institutes for Health Research (Proof-of-Principle I program, PIs: D.G.Huntsman and M.S. Anglesio), the United States Department of Defense Ovarian Cancer Research Program (OC110433, PI: D.D. Bowtell). A. Talhouk is funded through a Michael Smith Foundation for Health Research Scholar Award. M.S. Anglesio is funded through a Michael Smith Foundation for Health Research Scholar Award and the Janet D. Cottrelle Foundation Scholars program managed by the BC Cancer Foundation. J. George was partially supported by the NIH/National Cancer Institute award number P30CA034196. C. Wang was a Career Enhancement Awardee of the Mayo Clinic SPORE in Ovarian Cancer (P50 CA136393). D.G. Huntsman receives support from the Dr. Chew Wei Memorial Professorship in Gynecologic Oncology, and the Canada Research Chairs program (Research Chair in Molecular and Genomic Pathology). M. Widschwendter receives funding from the European Union’s Horizon 2020 European Research Council Programme, H2020 BRCA-ERC under Grant Agreement No. 742432 as well as the charity, The Eve Appeal (https://eveappeal.org.uk/), and support of the National Institute for Health Research (NIHR) and the University College London Hospitals (UCLH) Biomedical Research Centre. G.E. Konecny is supported by the Miriam and Sheldon Adelson Medical Research Foundation. B.Y. Karlan is funded by the American Cancer Society Early Detection Professorship (SIOP-06-258-01-COUN) and the National Center for Advancing Translational Sciences (NCATS), Grant UL1TR000124. H.R. Harris is 20 supported by the NIH/National Cancer Institute award number K22 CA193860. OVCARE (including the VAN study) receives support through the BC Cancer Foundation and The VGH+UBC Hospital Foundation (authors AT, BG, DGH, and MSA). The AOV study is supported by the Canadian Institutes of Health Research (MOP86727). The Gynaecological Oncology Biobank at Westmead, a member of the Australasian Biospecimen Network-Oncology group, was funded by the National Health and Medical Research Council Enabling Grants ID 310670 & ID 628903 and the Cancer Institute NSW Grants ID 12/RIG/1-17 & 15/RIG/1-16. The Australian Ovarian Cancer Study Group was supported by the U.S. Army Medical Research and Materiel Command under DAMD17-01-1-0729, The Cancer Council Victoria, Queensland Cancer Fund, The Cancer Council New South Wales, The Cancer Council South Australia, The Cancer Council Tasmania and The Cancer Foundation of Western Australia (Multi-State Applications 191, 211 and 182) and the National Health and Medical Research Council of Australia (NHMRC; ID199600; ID400413 and ID400281). BriTROC-1 was funded by Ovarian Cancer Action (to IAM and JDB, grant number 006) and supported by Cancer Research UK (grant numbers A15973, A15601, A18072, A17197, A19274 and A19694) and the National Institute for Health Research Cambridge and Imperial Biomedical Research Centres. Samples from the Mayo Clinic were collected and provided with support of P50 CA136393 (E.L.G., G.L.K, S.H.K, M.E.S.)

    Multi-Messenger Astrophysics with Pulsar Timing Arrays

    Get PDF
    Pulsar timing arrays (PTAs) are on the verge of detecting low-frequency gravitational waves (GWs) from supermassive black hole binaries (SMBHBs). With continued observations of a large sample of millisecond pulsars, PTAs will reach this major milestone within the next decade. Already, SMBHB candidates are being identified by electromagnetic surveys in ever-increasing numbers; upcoming surveys will enhance our ability to detect and verify candidates, and will be instrumental in identifying the host galaxies of GW sources. Multi-messenger (GW and electromagnetic) observations of SMBHBs will revolutionize our understanding of the co-evolution of SMBHs with their host galaxies, the dynamical interactions between binaries and their galactic environments, and the fundamental physics of accretion. Multi-messenger observations can also make SMBHBs 'standard sirens' for cosmological distance measurements out to z0.5z\simeq0.5. LIGO has already ushered in breakthrough insights in our knowledge of black holes. The multi-messenger detection of SMBHBs with PTAs will be a breakthrough in the years 202020302020-2030 and beyond, and prepare us for LISA to help complete our views of black hole demographics and evolution at higher redshifts

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development
    corecore